Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
1.
Biomedical and Environmental Sciences ; (12): 323-330, 2020.
Article in English | WPRIM | ID: wpr-829009

ABSTRACT

Objective@#To explore the protective effects of dexmedetomidine (Dex) against high glucose-induced epithelial-mesenchymal transition in HK-2 cells and relevant mechanisms.@*Methods@#HK-2 cells were exposed to either glucose or glucose+Dex for 6 h. The production of ROS, morphology of HK-2 cells, and cell cycle were detected. Moreover, the expression of AKT, p-AKT, ERK, p-ERK, PI3K, E-Cadherin, Claudin-1, and α-SMA were determined and compared between HK-2 cells exposed to glucose and those exposed to both glucose and Dex with or without PI3K/AKT pathway inhibitor LY294002 and ERK pathway inhibitor U0126.@*Results@#Compared with HK-2 cells exposed to high level of glucose, the HK-2 cells exposed to both high level of glucose and Dex showed: (1) lower level of ROS production; (2) cell morphology was complete; (3) more cells in G1 phase; (4) lower expression of p-AKT, p-ERK and α-SMA, higher expression of E-Cadherin and Claudin-1. PI3K/AKT inhibitor LY294002 and ERK inhibitor U0126 decreased the expression of p-AKT, p-ERK and α-SMA, and increased the expression of E-Cadherin and Claudin-1.@*Conclusion@#Dex can attenuate high glucose-induced HK-2 epithelial-mesenchymal transition by inhibiting AKT and ERK.


Subject(s)
Humans , Adrenergic alpha-2 Receptor Agonists , Pharmacology , Cell Line , Dexmedetomidine , Pharmacology , Epithelial-Mesenchymal Transition , Glucose , Metabolism , MAP Kinase Signaling System , Proto-Oncogene Proteins c-akt , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL